reports¶
- 
TH.reports.geolocate(*args, **kwargs) → pandas.core.frame.DataFrame¶
- Adds geolocation info to input DataFrame rows. - Parameters
- input – pandas Dataframe to add geolocation info 
- ip_column – Name of the input column containing IPs to geolocate 
 
- Returns
- merge of input pandas DataFrame and geolocation info 
 
- 
TH.reports.group(*args, **kwargs) → pandas.core.frame.DataFrame¶
- Obtains a report pandas.Dataframe out of the given dataframe grouping and counting by the given column values. - Parameters
- input – the source dataframe 
- by – List of columns of the source dataframe used to group the rows 
- sum – When defined will perform the sum of values in the specified column (instead of counting) 
- name – Name of the additional column created with the count for each of the grouped rows 
 
 - Code example: - def do_report(source_dataframe) return reports.group(source_dataframe, by=['MUID', 'UserName'], name='Actions') - Returns
- Dataframe with the resulting data or exception 
 
- 
TH.reports.profile(left: pandas.core.frame.DataFrame, right: pandas.core.frame.DataFrame, column: str) → pandas.core.frame.DataFrame¶
- Obtains a pandas.DataFrame as the result of profiling two (left and right) dataframes. Both dataframes must be of the same type or else the operation will fail.The resulting dataframe will contain the source rows except those of the train dataframe whose values (for the given column) match the source ones- Parameters
- left – The source dataframe with the current data 
- right – The dataframe against we will perform the profiling 
- column – The column we will use to perform the profiling 
 
 - Code example: - def do_profile(train_period, test_period) df1 = obtain_dataframe(period=train_period) df2 = obtain_dataframe(period=test_period) return reports.profile(df1, df2, 'column_name') - Returns
- DataFrame with the resulting data or exception 
 
- 
TH.reports.top(*args, **kwargs) → pandas.core.frame.DataFrame¶
- Obtains a pandas.DataFrame with the top results for a given one - Parameters
- input – the source dataframe 
- n – Number of rows for the resulting dataframe 
- by – Name of the column used to order the dataframe results 
- ascending – True to return the ‘n’ greater results according to column ‘by’ and false for the ‘n’ lowest 
 
 - Code example: - def do_top(source_dataframe) return reports.top(source_dataframe, n=10, by='Actions', ascending=False) - Returns
- DataFrame with the resulting data or exception